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An equation which relates the output signal of an electrostatic dispersion analyzer and the energy
distribution function of the charged particles entering it is derived with the fluctuations of

the potentials on the defecting electrodes taken into account. Solutions of this equation are
obtained. The influence of noise on the instrumental functions of analyzers is considered.
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INTRODUCTION If the measurement time of the particle current at the
analyzer exit is much greater than the characteristic period of

. l.t was show_n in the preceding paﬂ_)ethat the energy the fluctuations, then, using E¢l), we can represent the
distribution function of the charged particles at the entrance, .- value of the current at the analyzer exit in the form
to an electrostatic analyzer and the output signal of the ana-
lyzer are related by the expression teo L
I(U)= e(U,U) 1 (U)du

I(Ul,...,Un)=fo+wf(E)A(U1/E,...,Un/E)dE, (1)

+oo + q .

where A(U, /E, ... U,/E) is the instrumental function of :Iof,x ‘P(U’U)fo f(E)A(f)dEdU )
the analyzery,, ... ,U, are the potentials on the analyzer
electrodes; and(E) is the energy distribution function of Of
the charged particles. o

Relation(1) also holds when the stray fields arising from I(U):IOI f(E)B(U, E)dE, (4)
the actual geometry of the analyzer are taken into account. 0
However, the form of the instrumental function of a charged-

. . . ) where
particle analyzer is determined not only by its geometry, but
also by the fluctuations of the fields within the analyzer, i.e., too . .
by the noise. If fluctuations whose characteristic period is B(U*E):j_x ¢(U,U)A(qU/E)dU ®)
much greater than the time of flight of a particle in the ana-
lyzer are considered, it can be assumed that the tuning efs the instrumental function of the analyzer with consider-
ergy of the analyzer fluctuates. ation of the noise.

In this paper we shall consider the influence of noise on  Let us find an approximate solution of this equation.
the instrumental function of an electrostatic dispersion anaExpandingT(U) into a Taylor series about the poitt,

lyzer. assuming that (U)~1(U) in a first approximation, and tak-
ing into account the terms of the series containing derivatives

no higher than the second, frof8) we obtain the expression
INFLUENCE OF FLUCTUATIONS ON THE INSTRUMENTAL

FUNCTION OF AN ANALYZER WITH ONE DEFLECTING ~ 0'2 d2|
ELECTRODE I(U)QI(U)_?W. (6)

Let us assume for an electrostatic analyzer, in which
only one electrode is under a potential, that the volﬂ?igm
the analyzer electrode fluctuates about the mean potential
U with a distribution functione(U,U), which satisfies the
following conditions

A solution of the equation

- o U
|(U)=|0f0 f(E)A(%)dE @)

can be obtained in the form of a serfes:

" o(0,U)d0=1, o "
J_w f(ku)=2> Bnunflw, 8
+ o0 n=0 U
U=<U>=J_WU~¢(U,U)dU, where
y o ¥ 1 1 . i(n—i
UZ(U):f_w(U—U)2¢(U,U)dU. ) Bo:m' “:_C_z '(n( |);'
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FIG. 1. Curves for an electrostatic dispersion analyzer: a—

0ar The ratio between the standard deviation of the instrumen-
§ tal function AU (with allowance for the influence of the
ﬁ 0.6t fluctuations of the potentipland the standard deviatian
. of the noise and, b—the ratio of the height of the instru-
g mental functiorB . (with consideration of the influence of
« 0.4 b the potential fluctuationgo the height of the instrumental

function A, (without consideration of the noisas func-
02t tions of the ratio of the standard deviation of the instrumen-
tal function (without consideration of the nois®E to the
standard deviatiow of the fluctuations of the potentials on
oL, A L i L L the analyzer electrodes.

£fv/0

Ultimately, to within the terms with a second derivative, transmission of the analyzer will decrease as the energy of
for the “true distribution” as a function of the output signal the particles decreases. We use the term transmission to refer
(U) we obtain to a coefficient of an analyzer that is equal to the ratio of the
. 2 2 2 2 maximum output current of the analyzer to the current of a
i(U) udi/du / _ S U_Z , (9) monoenergetic beam at its entrance.

CidoU  2Cidlo |\~ CooCp U In the second case, since the noise distribution function

where theCpm=J¢“z" (z—k)™A(q/z)dz are constants.  ¢(U,U) is considerably narrower than the instrumental
It is expedient to select the analyzer constant such that ifunction A(qU/E), applying the theorem of the mean and

the range of energies where the influence of the noise igssuming thaa(qU/E)~A(qU/E), we obtain
negligibly small, the analyzer constant would be determined

from the expression
k= ClO/COO . (10)
Let us now consider the influence of the noise on thei'e" the width of the instrumental function will increase lin-
early with increasing energy, and the transmission of the

f(kU)~

qu
B(U, E)~A<F), (14)

form of the instrumental function of the analyzer. For an

arbitrary noise distribution functiorp(U,U), an approxi- analyzer will remain unchanged,

; . . . Let us trace how the form of the instrumental function of
mate analytical expression for the instrumental function o . .
the analyzer varies in the presence of noise as a function of

B(U,E) of the analyzer can be obtained in two limiting . s o .
A . . . the energy in the case of a noise distribution function of the
cases: in the range of energies where the width of the instru- 5 . ] )
(U,U)=¢(U—-U). For this purpose we treat the in-

mental function is determined mainly by the noise and in thdorm ¢

range of energies where the influence of the noise on thatrumental functiorB(U,E) as a distribution function with
instrumental function is weak. respect toU, which can be characterized by the mean)

. 2
In the former case, applying the theorem of the nigan and the varianc¢AU"),
theointegratl) iq Eqg.(5 and assuming thaf(qg/z)=0 for y JTZUB(U,E)dU
g =
z=<0, we obtain (U) [T*B(U,E)dE '

(15

B(U,E)=CoUe(U,U). 11
( ) 00! V‘P( ) ) (11 , ;m(U—<U>)ZB(U,E)dU
Assuming that) ¢(U,U) varies weakly across the width (AU%= [7*B(U.E)dU : (16)

of the instrumental functiod\(q U/E), we have

After some relatively simple mathematical manipula-
Oe(0,U)~ E¢<E,U). (12) t@ons, we find that the mean value of the potential is propor-
k™l k tional to the energy:

Substituting this expression intd 1), we ultimately ob- C,
tain (U>=€E. 17
E oc o0
B(UIE)%(COOIk)EQD(EiU)i (13)  Here C=["%A(gx)dx, and C;=["ZxA(gqx)dx, where
x=U/E.

i.e., the form of the instrumental function is determined  We calculate the variance of the instrumental function
mainly by the noise distribution function, and the value of by substituting expressiofi?) into Eq. (16) and performing
the instrumental function at the maximum depends on thehe integration:
energy of the particles. o 2422

For example, for a noise distribution function of the (AU%)=0°+b%E". (18)
form o(U—U) it follows from expression(13) that the Hereb?=(C,C—C?)/C?, whereC,=J*Zx?A(qx)dx.
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Figure 1 shows qualitatively the behavior of the width of

the instrumental function and its value at the maximum as &(U1. 2)—|of f
function of E. The expressionél3), (14), and(18) obtained

allow us to conclude that in the range of energies where += [U; U,
E<a/b the width of the instrumental function scarcely de- XJ Al = E'E
pends on the energy, and its value at the maximum increases

U11U21U1! 2)

)f(E)dEdUldUZ
0

linearly with the energy. Conversely, in the range of energies oo I L
where E>o/b the width of the instrumental function in- :f J_m ¢(U1,Uz,Uy,Up) 1 (Ug,Uz)dU dU,,
creases linearly with increasing energy, and the value at the

maximum remains constant. The quantigb? corresponds (24

to the variance of the instrumental function with respect to

U in the absence of potential fluctuations and can be dete®here ¢(U1,U5,U;,Up) is the normalized distribution

mined experimentally. function of the potential fluctuations, which satisfies the con-
It should be noted that a solution of E§) can be found  ditions

in general form for a noise distribution function of the form

under consideratiog(U— U). Applying the Fourier trans- f ¢(U;,0,,U;,U,)dU,dU,=1,
formation to Eq.(3), we obtain a solution in the form of a -
serie$

+ oo

+00v o o . o
f_ Uip(Uq,Uz,Uq,Uz)dUdU,=Uy,

e dsl(u)
f f(E)A (q?)dE > D. dijs):uuy (19)

0 s=0
+ o0

02¢(U1,U2,U1,U2)d01d02:U2,
where

—oo

+w ~ ~ ~ ~ ~
(U;—-U1)2¢(U;,U,,U;,Uz)dUdU,= 02,
(m—s)!

(20

— o0

"~ 2 " ” V 2
A series solution of E¢(19) was found in Ref. 1. In the (Uz=U3)%¢(Uy,Uz,Up,Uz)dU Uz =03,

present case it has the form

— o0

+ oo
+ o

B (U;—Uy)(U,—Uy)e(Uy,U,,Up,Uy)dU,dU,
f(kU)=>, B,U" !
n=0

J
f
ouf Tetwszr. B o.f et o |
-
M

—o0

(21)
=cor(U,,U0,). (25)
where
Assuming that the functionl (U;,U,) varies weakly
1 1 2 Cin-i) across the width of the noise distribution function, expanding
B "~ kCqp' B”:_C_no i=20 n—i)" (22) T(U,,U,) in a Taylor series about the point¢,U,), as-
suming thatl (U;,U,)=1(U;,U,) in a first approximation,
Ultimately, for the general solution we obtain and keeping the terms with derivatives no higher than the
second order, we obtain from E®4)

+ o + o0

n,ldm+n| (U)
fkU)=2 2 DuBU" '~ 5men (23 ~ 1 ,#
n=0m=0 1(Uyp,Up)~1(Uq,Uy)— Ul&Uz
where the analyzer constakis specified by expressiq(T). 2, 5
+ U, Uy))——+03—5].
ZCW(UlIUZ)aUlaUZ Uzaug (26)
INFLUENCE OF NOISE ON THE INSTRUMENTAL FUNCTION If the mean values of the potentials are linearly related, i.e.,

OF AN ANALYZER WITH TWO DEFLECTING

if U,=AU, and if we take into account that the expression
ELECTRODES

for the energy distribution function in terms af(U;,U,)
All the arguments advanced above referred to the case ifas the form

which a potential was supplied to one electrode. Let us now _

consider the case in which potentials are supplied to two HkUp=—3 8 U“’ld I"(Ug,AUy) 27

electrodes. The expression for the mean value of the current Vg &y Mt du’ ’

at the analyzer exit under the condition that the measurement

time is much greater than the characteristic period of thehe solution of Eq.(24) to terms with a second derivative

fluctuations has the form will be as follows:
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1 [1(U;,AUy)
f(kU]-)NE( C10U1

Uy CaoCoo— Clp d2I(U,AUy)

2 CoCiCao duf

_Us 20"2|(U11U2)
7102

.. 9°1(U,Uy)

+2001/(U1,U2)W

2192|(U1,U2)
UzTg |U2:>\Ul-

|

CONCLUSIONS

In conclusion, let us briefly describe the results obtained.

1. Equationg3) and(24) make it possible to describe the
relationship between the energy distribution function of the
charged particles and the output signal of an electrostatic
analyzer operating in the spectrometer mode with the influ-
ence of fluctuations of the potentials on its electrodes taken
into account.

2. The approximate solution8) and(28) of these equa-
tions for an arbitrary distribution function of the potential
fluctuations permit taking into account the corrections asso-
ciated with noise to the reconstructed energy distribution.

3. For analyzers with several electrodes under different
potentials, it is not enough to know the values of the output
signal at the points where the mean values of the potentials

It follows from expressiori28) that a more exact reconstruc- are linearly related. More exact reconstruction of the true
tion of the energy spectrum with the noise corrections undegnergy distribution requires knowledge of the values of the
the condition that the mean values of the potentials are ”noutput signal in the vicinity of these points and the disper-
early related requires knowledge of the values of the outpu§ion of the noise.

signal not only at points where the potentials are linearly 4. An examination of the behavior of the instrumental
related, but also in a certain vicinity of the latter in the gen-function as a function of various parameters in the case of an

eral case. If the additional conditions on the potential fluc-analyzer with one deflecting electrode shows that at energies
tuations

are satisfied, expressi¢a8) transforms into an expression in

o5=\%0%, cov(U;,Uy)=N0?

for which the width of the instrumental function of the ana-
lyzer is determined mainly by the potential fluctuations, the
transmission of the analyzer will fall off as the energy de-
creases.
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