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An equation which relates the output signal of an electrostatic dispersion analyzer and the energy
distribution function of the charged particles entering it is derived with the fluctuations of
the potentials on the defecting electrodes taken into account. Solutions of this equation are
obtained. The influence of noise on the instrumental functions of analyzers is considered.
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It was shown in the preceding paper1 that the energy
distribution function of the charged particles at the entra
to an electrostatic analyzer and the output signal of the a
lyzer are related by the expression

I ~U1 , . . . ,Un!5E
0

1`

f ~E!A~U1 /E, . . . ,Un /E!dE, ~1!

where A(U1 /E, . . . ,Un /E) is the instrumental function o
the analyzer;U1 , . . . ,Un are the potentials on the analyz
electrodes; andf (E) is the energy distribution function o
the charged particles.

Relation~1! also holds when the stray fields arising fro
the actual geometry of the analyzer are taken into acco
However, the form of the instrumental function of a charge
particle analyzer is determined not only by its geometry,
also by the fluctuations of the fields within the analyzer, i
by the noise. If fluctuations whose characteristic period
much greater than the time of flight of a particle in the an
lyzer are considered, it can be assumed that the tuning
ergy of the analyzer fluctuates.

In this paper we shall consider the influence of noise
the instrumental function of an electrostatic dispersion a
lyzer.

INFLUENCE OF FLUCTUATIONS ON THE INSTRUMENTAL
FUNCTION OF AN ANALYZER WITH ONE DEFLECTING
ELECTRODE

Let us assume for an electrostatic analyzer, in wh
only one electrode is under a potential, that the voltageǓ on
the analyzer electrode fluctuates about the mean pote
U with a distribution functionw(Ǔ,U), which satisfies the
following conditions

E
2`

1`

w~Ǔ,U !dǓ51,

U5^Ǔ&5E
2`

1`

Ǔ•w~Ǔ,U !dU,

s2~Ǔ !5E
2`

1`

~Ǔ2U !2w~Ǔ,U !dU. ~2!
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analyzer exit is much greater than the characteristic perio
the fluctuations, then, using Eq.~1!, we can represent the
mean value of the current at the analyzer exit in the form

I ~U !5E
2`

1`

w~Ǔ,U ! Ĩ ~Ǔ !dǓ

5I 0E
2`

1`

w~Ǔ,U !E
0

1`

f ~E!AS qǓ

E
D dEdǓ ~3!

or

I ~U !5I 0E
0

1`

f ~E!B~U, E!dE, ~4!

where

B~U,E!5E
2`

1`

w~Ǔ,U !A~qǓ/E!dǓ ~5!

is the instrumental function of the analyzer with consid
ation of the noise.

Let us find an approximate solution of this equatio
Expanding Ĩ (Ǔ) into a Taylor series about the pointU,
assuming thatĨ (U)'I (U) in a first approximation, and tak
ing into account the terms of the series containing derivati
no higher than the second, from~3! we obtain the expression

Ĩ ~U !'I ~U !2
s2

2

d2I

dU2 . ~6!

A solution of the equation

Ĩ ~U !5I 0E
0

1`

f ~E!AS qU

E DdE ~7!

can be obtained in the form of a series:1

f ~kU!5 (
n50

1`

BnUn21
d Ĩ n~U !

dUn , ~8!

where

B05
1

kC00
, Bn52

1

Cn0
(
i 50

n

Bi

Ci ~n2 i !

~n2 i !!
.
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FIG. 1. Curves for an electrostatic dispersion analyzer: a
The ratio between the standard deviation of the instrum
tal function DU ~with allowance for the influence of the
fluctuations of the potential! and the standard deviations
of the noise and, b—the ratio of the height of the instr
mental functionBmax ~with consideration of the influence o
the potential fluctuations! to the height of the instrumenta
function Amax ~without consideration of the noise! as func-
tions of the ratio of the standard deviation of the instrume
tal function ~without consideration of the noise! bE to the
standard deviations of the fluctuations of the potentials on
the analyzer electrodes.
Ultimately, to within the terms with a second derivative,
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for the ‘‘true distribution’’ as a function of the output signa
I (U) we obtain

f ~kU!'
i ~U !

C10I 0U
2

Ud2I /dU2

2C10I 0
S 12

C10
2

C00C20
1

s2

U2D , ~9!

where theCnm5*0
1`zn21(z2k)mA(q/z)dz are constants.

It is expedient to select the analyzer constant such tha
the range of energies where the influence of the nois
negligibly small, the analyzer constant would be determin
from the expression1

k5C10/C00. ~10!

Let us now consider the influence of the noise on
form of the instrumental function of the analyzer. For
arbitrary noise distribution functionw(Ǔ,U), an approxi-
mate analytical expression for the instrumental funct
B(U,E) of the analyzer can be obtained in two limitin
cases: in the range of energies where the width of the ins
mental function is determined mainly by the noise and in
range of energies where the influence of the noise on
instrumental function is weak.

In the former case, applying the theorem of the mean2 to
the integral in Eq.~5! and assuming thatA(q/z)[0 for
z<0, we obtain

B~U,E!5C00Ûw~Û,U !. ~11!

Assuming thatǓw(Ǔ,U) varies weakly across the widt
of the instrumental functionA(qǓ/E), we have

Ûw~Û,U !'
E

k
wS E

k
,U D . ~12!

Substituting this expression into~11!, we ultimately ob-
tain

B~U,E!'~C00/k!EwS E

k
,U D , ~13!

i.e., the form of the instrumental function is determin
mainly by the noise distribution function, and the value
the instrumental function at the maximum depends on
energy of the particles.

For example, for a noise distribution function of th
form w(Ǔ2U) it follows from expression~13! that the
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the particles decreases. We use the term transmission to
to a coefficient of an analyzer that is equal to the ratio of
maximum output current of the analyzer to the current o
monoenergetic beam at its entrance.

In the second case, since the noise distribution funct
w(Ǔ,U) is considerably narrower than the instrumen
function A(qǓ/E), applying the theorem of the mean an
assuming thatA(qÛ/E)'A(qU/E), we obtain

B~U, E!'AS qU

E D , ~14!

i.e., the width of the instrumental function will increase lin
early with increasing energy, and the transmission of
analyzer will remain unchanged.

Let us trace how the form of the instrumental function
the analyzer varies in the presence of noise as a functio
the energy in the case of a noise distribution function of
form w(Ǔ,U)5w(Ǔ2U). For this purpose we treat the in
strumental functionB(U,E) as a distribution function with
respect toU, which can be characterized by the mean^U&
and the variancêDU2&,

^U&5
*2`

1`UB~U,E!dU

*2`
1`B~U,E!dE

, ~15!

^DU2&5
*`

1`~U2^U&!2B~U,E!dU

*2`
1`B~U,E!dU

. ~16!

After some relatively simple mathematical manipul
tions, we find that the mean value of the potential is prop
tional to the energy:

^U&5
C1

C
E. ~17!

Here C5*2`
1`A(qx)dx, and C15*2`

1`xA(qx)dx, where
x5Ǔ/E.

We calculate the variance of the instrumental functi
by substituting expression~17! into Eq. ~16! and performing
the integration:

^DU2&5s21b2E2. ~18!

Hereb25(C2C2C1
2)/C2, whereC25*2`

1`x2A(qx)dx.
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Figure 1 shows qualitatively the behavior of the width of
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I ~U ,U !5I E E1`

w~Ǔ ,Ǔ ,U ,U !
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the instrumental function and its value at the maximum a
function of E. The expressions~13!, ~14!, and~18! obtained
allow us to conclude that in the range of energies wh
E!s/b the width of the instrumental function scarcely d
pends on the energy, and its value at the maximum incre
linearly with the energy. Conversely, in the range of energ
where E@s/b the width of the instrumental function in
creases linearly with increasing energy, and the value at
maximum remains constant. The quantityE2b2 corresponds
to the variance of the instrumental function with respect
U in the absence of potential fluctuations and can be de
mined experimentally.

It should be noted that a solution of Eq.~3! can be found
in general form for a noise distribution function of the for
under considerationw(Ǔ2U). Applying the Fourier trans-
formation to Eq.~3!, we obtain a solution in the form of a
series3

E
0

1`

f ~E!AS qU

E DdE5(
s50

1`

Ds

dsI ~U !

dUs 5 Ĩ ~U !, ~19!

where

D0E
2`

1`

w~z!dz51, (
s50

m

DsE
2`

1`

zm2sw~z!dz
1

~m2s!!
50.

~20!

A series solution of Eq.~19! was found in Ref. 1. In the
present case it has the form

f ~kU!5 (
n50

1`

BnUn21
d Ĩ n~U !

dUn , ~21!

where

B05
1

kC00
, Bn52

1

Cn0
(
i 50

n

Bi

Ci ~n2 i !

~n2 i !!
. ~22!

Ultimately, for the general solution we obtain

f ~kU!5 (
n50

1`

(
m50

1`

DmBnUn21
dm1nI ~U !

dUm1n , ~23!

where the analyzer constantk is specified by expression~7!.

INFLUENCE OF NOISE ON THE INSTRUMENTAL FUNCTION
OF AN ANALYZER WITH TWO DEFLECTING
ELECTRODES

All the arguments advanced above referred to the cas
which a potential was supplied to one electrode. Let us n
consider the case in which potentials are supplied to
electrodes. The expression for the mean value of the cur
at the analyzer exit under the condition that the measurem
time is much greater than the characteristic period of
fluctuations has the form
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1 2 0
2`

1 2 1 2

3E
0

1`

AS Ǔ1

E
,
Ǔ2

E
D f ~E!dEdǓ1dǓ2

5E E
2`

1`

w~Ǔ1 ,Ǔ2 ,U1 ,U2! Ĩ ~Ǔ1 ,Ǔ2!dǓ1dǓ2 ,

~24!

where w(Ǔ1 ,Ǔ2 ,U1 ,U2) is the normalized distribution
function of the potential fluctuations, which satisfies the co
ditions

E E
2`

1`

w~Ǔ1 ,Ǔ2 ,U1 ,U2!dǓ1dǓ251,

E E
2`

1`

Ǔ1w~Ǔ1 ,Ǔ2 ,U1 ,U2!dǓ1dǓ25U1 ,

E E
2`

1`

Ǔ2w~Ǔ1 ,Ǔ2 ,U1 ,U2!dǓ1dǓ25U2 ,

E E
2`

1`

~Ǔ12U1!2w~Ǔ1 ,Ǔ2 ,U1 ,U2!dǓ1dǓ25s1
2 ,

E E
2`

1`

~Ǔ22U2!2w~Ǔ1 ,Ǔ2 ,U1 ,U2!dǓ1dǓ25s2
2 ,

E E
2`

1`

~Ǔ12U1!~Ǔ22U2!w~Ǔ1 ,Ǔ2 ,U1 ,U2!dǓ1dǓ2

5con~Ǔ1 ,Ǔ2!. ~25!

Assuming that the functionĨ (Ǔ1 ,Ǔ2) varies weakly
across the width of the noise distribution function, expand
Ĩ (Ǔ1 ,Ǔ2) in a Taylor series about the point (U1 ,U2), as-
suming thatĨ (U1 ,U2)5I (U1 ,U2) in a first approximation,
and keeping the terms with derivatives no higher than
second order, we obtain from Eq.~24!

Ĩ ~U1 ,U2!'I ~U1 ,U2!2
1

2 S s1
2 ]2I

]U1
2

12con~Ǔ1 ,Ǔ2!
]2I

]U1]U2
1s2

2 ]2I

]U2
2D . ~26!

If the mean values of the potentials are linearly related, i
if U25lU1, and if we take into account that the expressi
for the energy distribution function in terms ofĨ (U1 ,U2)
has the form1

f ~kU1!5
1

I 0
(
n50

`

BnU1
n21 d Ĩ n~U1 ,lU1!

dU1
n , ~27!

the solution of Eq.~24! to terms with a second derivativ
will be as follows:
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f ~kU !'
1 I ~U1 ,lU1!
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1 I 0
S C10U1

2
U1

2

C20C002C10
2

C00C10C20

d2I ~U1 ,lU1!

dU1
2 D

2
U1

2I 0
S s1

2 ]2I ~U1 ,U2!

]U1
2

12con~Ǔ1 ,Ǔ2!
]2I ~U1 ,U2!

]U1]U2

1s2
2 ]2I ~U1 ,U2!

]U2
2 D uU25lU1

. ~28!

It follows from expression~28! that a more exact reconstruc
tion of the energy spectrum with the noise corrections un
the condition that the mean values of the potentials are
early related requires knowledge of the values of the ou
signal not only at points where the potentials are linea
related, but also in a certain vicinity of the latter in the ge
eral case. If the additional conditions on the potential flu
tuations

s2
25l2s1

2 , con~Ǔ1 ,Ǔ2!5ls1
2 ~29!

are satisfied, expression~28! transforms into an expression i
total derivatives, and to reconstruct such a spectrum
within the corrections associated with a second derivative
is sufficient to know the signal at the points where the me
values of the potentials are linearly related.

We note that the results obtained for spectrometers w
two electrodes can easily be generalized to the case o
analyzer withn electrodes.
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In conclusion, let us briefly describe the results obtain
1. Equations~3! and~24! make it possible to describe th

relationship between the energy distribution function of t
charged particles and the output signal of an electrost
analyzer operating in the spectrometer mode with the in
ence of fluctuations of the potentials on its electrodes ta
into account.

2. The approximate solutions~9! and~28! of these equa-
tions for an arbitrary distribution function of the potenti
fluctuations permit taking into account the corrections as
ciated with noise to the reconstructed energy distribution

3. For analyzers with several electrodes under differ
potentials, it is not enough to know the values of the out
signal at the points where the mean values of the poten
are linearly related. More exact reconstruction of the tr
energy distribution requires knowledge of the values of
output signal in the vicinity of these points and the disp
sion of the noise.

4. An examination of the behavior of the instrumen
function as a function of various parameters in the case o
analyzer with one deflecting electrode shows that at ener
for which the width of the instrumental function of the an
lyzer is determined mainly by the potential fluctuations, t
transmission of the analyzer will fall off as the energy d
creases.
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